NoSQL – High-performance, non relational databases with flexible data models
April 23rd, 2019

What are NoSQL databases?
NoSQL databases are purpose built for specific data models and have flexible schema for building modern applications. NoSQL databases are widely recognized for their ease of development, functionality, and performance at scale. They use a variety of data models, including document, graph, key-value, in-memory, and search
How Does a NoSQL (non relational) Database Work?
NoSQL databases use a variety of data models for accessing and managing data, such as document, graph, key-value, in-memory, and search. These types of databases are optimized specifically for applications that require large data volume, low latency, and flexible data models, which are achieved by relaxing some of the data consistency restrictions of other databases.
Why should you use a NoSQL database?
NoSQL databases are a great fit for many modern applications such as mobile, web, and gaming that require flexible, scalable, high-performance, and highly functional databases to provide great user experiences.
- Flexibility: NoSQL databases generally provide flexible schema that enable faster and more iterative development. The flexible data model makes NoSQL databases ideal for semi-structured and unstructured data.
- Scalability: NoSQL databases are generally designed to scale out by using distributed clusters of hardware instead of scaling up by adding expensive and robust servers. Some cloud providers handle these operations behind-the-scenes as a fully managed service.
- High-performance: NoSQL database are optimized for specific data models (such as document, key-value, and graph) and access patterns that enable higher performance than trying to accomplish similar functionality with relational databases.
- Highly functional: NoSQL databases provide highly functional APIs and data types that are purpose built for each of their respective data models.
Types of NoSQL Databases
Key-value: Key-value databases are highly partition-able and allow horizontal scaling at scales that other types of databases cannot achieve. Use cases such as gaming, ad tech, and IoT lend themselves particularly well to the key-value data model. DynamoDB is designed to provide consistent single-digit millisecond latency for any scale of workloads.
Document: In application code, data is represented often as an object or JSON-like document because it is an efficient and intuitive data model for developers. Document databases make it easier for developers to store and query data in a database by using the same document model format that they use in their application code. The flexible, semi-structured, and hierarchical nature of documents and document databases allows them to evolve with applications’ needs. The document model works well.
with catalogs, user profiles, and content management systems where each document is unique and evolves over time.
Graph: A graph database’s purpose is to make it easy to build and run applications that work with highly connected data sets. Typical use cases for a graph database include social networking, recommendation engines, fraud detection, and knowledge graphs.
In-memory: Gaming and ad-tech applications have use cases such as leader boards, session stores, and real-time analytics that require microsecond response times and can have large spikes in traffic coming at any time.
Search: Many applications output logs to help developers troubleshoot issues. Elastic-search Service is purpose built for providing near-real-time visualizations and analytics of machine-generated data by indexing, aggregating, and searching semi structured logs and metrics. Elastic-search also is a powerful, high-performance search engine for full-text search use cases.
SQL (relational) vs. NoSQL (non relational) databases
For decades, the predominant data model that was used for application development was the relational data model used by relational databases such as Oracle, DB2, SQL Server, MySQL, and PostgreSQL. It wasn’t until the mid to late 2000s that other data models began to gain significant adoption and usage. To differentiate and categorize these new classes of databases and data models, the term “NoSQL” was coined. Often the term “NoSQL” is used interchangeably with “non relational.”
Though there are many types of NoSQL databases with varying features, the following table shows some of the differences between SQL and NoSQL databases.
Relational databases | NoSQL databases | |
---|---|---|
Optimal workloads | Relational databases are designed for transactional and strongly consistent online transaction processing (OLTP) applications and are good for online analytical processing (OLAP). | NoSQL key-value, document, graph, and in-memory databases are designed for OLTP for a number of data access patterns that include low-latency applications. NoSQL search databases are designed for analytics over semi-structured data. |
Data model | The relational model normalizes data into tables that are composed of rows and columns. A schema strictly defines the tables, rows, columns, indexes, relationships between tables, and other database elements. The database enforces the referential integrity in relationships between tables. | NoSQL databases provide a variety of data models that includes document, graph, key-value, in-memory, and search. |
ACID properties | Relational databases provide atomicity, consistency, isolation, and durability (ACID) properties:
|
NoSQL databases often make tradeoffs by relaxing some of the ACID properties of relational databases for a more flexible data model that can scale horizontally. This makes NoSQL databases an excellent choice for high throughput, low-latency use cases that need to scale horizontally beyond the limitations of a single instance. |
Performance | Performance is generally dependent on the disk subsystem. The optimization of queries, indexes, and table structure is often required to achieve peak performance. | Performance is generally a function of the underlying hardware cluster size, network latency, and the calling application. |
Scale | Relational databases typically scale up by increasing the compute capabilities of the hardware or scale-out by adding replicas for read-only workloads. | NoSQL databases typically are partitionable because key-value access patterns are able to scale out by using distributed architecture to increase throughput that provides consistent performance at near boundless scale. |
APIs | Requests to store and retrieve data are communicated using queries that conform to a structured query language (SQL). These queries are parsed and executed by the relational database. | Object-based APIs allow app developers to easily store and retrieve in-memory data structures. Partition keys let apps look up key-value pairs, column sets, or semistructured documents that contain serialized app objects and attributes. |
Follow Us
Other Articles
- A guide to onboard Security Information and Event Manag ...
- Digitalization without Cyber Security
- The story of university data attacks
- What is Soar?
- When Protection Fails, Forensics can still win the game
- Drones are capable to capture your communications!
- 2019 The Year of Cyber Crime
- Email Security Gateways
- Introduction to SIEM
- Insider Threat
- A beginner’s guide to Blockchain
- NoSQL – High-performance, non relational database ...
- Leveraging Cloud for Disaster Recovery
- Application Performance Monitoring
- Cognitive Security AI Driven Cyber Security
- Introduction to Container Services
- Insider Threat Detection
- Build Secure and Governed Microservices with Kafka Streams
- Add and Manage photos in Outlook messages and contacts ...
- Security on a Budget
- About CodeTwo Email Signatures for Office 365
- Googles presence in China
- Check Point Software acquires Dome9 to beef up multi-cl ...
- Exploring the benefits and challenges of hyper converge ...
- Next Generation cloud backup and data protection for Of ...
- Backup for Office 365 with Code Two
- Cyberattack
- Email Security
- Cisco Issues Security Patch
- British Airways Hacked
- AutoML Vision
- Day 2 Keynote: Bringing the Cloud to You
- CI/CD in a Serverless World
- Keynote Google
- Google Cloud Next 2018 in Under 12 Minutes
- UAE Crowned as the most Digital Friendly Country
- Ransomware continues to prey on the UAE
- Chrome for all
- Machine Learning for a Future-Facing ZTS Revolution
- The Dawn of the Cloud
- GDPR
- Will Cryptocurrency Replace Conventional Currency
- Internet of Thing Under Attack
- Cloud Native Computing Transforming IT Infrastructure
- Cyber Security with Artificial Intelligence
- Understanding Cybersecurity at the Corporate level
- Cryptojacking on the rise
- Google discontinues Google Search Appliance (GSA)
- Secure cloud entry points with Google Chrome Enterprise
- Cloud Infrastructure to drive UAE Cloud Computing Market
- AI to contribute $320 billion USD to Middle East GDP by 2030
- Well begun for well being
- A Spin around the Space
- Oracle opens first innovation hub with a focus on AI
- AI to bring a world of opportunities to Dubai
- The BitCoin Revolution
- Annihilating to a Green Thought
- The Intelligent Move
- Looking Right at the Face of Facebook and Google